i"‘ﬂfuuux mr rwnaaws oWL Slanaaras updaite * ibvl s New Ubc< Uirections
[P

Distributed Dilemma:
Two-Phased Commit
or Replication?

Client/Server
Middieware

Designing for
Decision Support

Objects and Databases:
Where's It Headed?

993
$39 5

L HL* 4

VOL. 6 NO. 5

Two-Phased Commit
or Replication?

IEF/DB2
Performance, Part Il

Concentric Design
for Decision Support

Objects and Databases:
Where Are We Now?

EDITOR'S BUFFER
ACCESS PATH

DATABASE DESIGN

ACCORDING TO DATE

DBA SHOPTALK

CLIENT/SERVER FORUM

DESKTOP DATABASE

ENTERPRISE VIEW

SQOL UPDATE

FOR MANAGERS ONLY

COVER BY: JIM SHINNICK

PRODUCT WATCH

CATABASE PROCAAMMING & DESIGN (155
g angd adiiora inGuines 10 Ihe adcreas. For

21age &l 55 per yoas

&) malenis D
BASE PROGRAMBING A
lime mteraatons, 00N 7

DATABASE P

iy & M :l-':ll.rul.g'l'[n

g

JA

02
60

DEPARTMENTS

1
1
15
21
20
29
66
68
/0
/4
16

W DES5-4518) & puglished moatly by MWller Fresmar, ing
o WL i (B0 2850169 |oulsios

arazan G

e e

A'IMU!S: PnD}M#MI'lH & DESIGN s-
" righiea ® 1393 by Mier Fiesman inc &
i | s micrptem, 105%m=

DaviD MCOGOVERAN
An in-depih analyss of the Oracle and Sybase

approaches to distributed transaction control

Louls A, MASCELLI
]-ull”'.lf]_lc al I'll.'.:' r|'|'|' o lr‘.'rr‘lrrr;_-;lr.'.g'p o ors

int the popular 1EF /DB2 environment

EKAMRAN PARSAYE AND MARK CHIGNELL
A design method fo help vou keep the forest

it mtired @5 you sweng through the trees

SANJEEV VARMA
Ofrtect onentation 5 sure to affect the future

of the database industry, Here's g look at how

[BM meets s towe cost audience: the users.
C. |. Date anstwers gueries from readers
Al the helm of busivess change
fJ;h'rrcimg the idea closure
Corning Vitro's m te cleeni ! server
fust what s “mdd] wre” for client/ serper?
Borland's new Para
Making &f

1€ MO 1 MOGE] meaning il

Watch out: The MO

Spring is here (and

8. Sa
SUBSCRIET

" et

Farges o DaATARL

Rk Tagge w

Tiale gl appeEttg i

chn and acficks

ROGRAMMING & DESIGN

5

MAY 1993

siw Bvaigbl from Lnsessily Misroe

CUSTOMER SEmMvicy

L™

2PC? Replication? Or Both? Here's a primer to help you find your way

BY DAVID MCGOVERAN

through the central issues in today's distributed DBMS debate

Two-Phased
Commuit or

Replication?

R ECENTLY, A RIVAL-
ry has developed be-
tween Oracle and Sybase around
automatic versus programmatic two-
phase commit (2PC) implementa-
tions. For example, code for Sybase
programmatic 2PC’ has been con-
trasted with the Oracle SQL using
transparent 2PC in an Oracle Corp.
advertisement. Such comparisons
are useful for marketing purposes,
but do not expose the more impor-
tant technical issues.

Similarly, when Sybase an-
nounced System 10 (the System 10
SQL Server was formerly referred
to as Release 5) and Replication
Server in November of 1992, the
computing industry press began
publishing articles that portrayed
replication as an alternative to the
overhead of 2PC. This inappropri-
ate comparison is technically in-
correct and has been widely prop-
agated by the computing industry
press. Hopefully, this article will
help clarify the situation with re-
spect to both issues,

In this article, 1 will discuss |

the key methods of distributing
data, focusing on two: replication
and distributed transactions with
2PC. | will describe the details of

implementation by some commer- | defining the phvsical resources
b E ph)

cial relational DBMSs, specifically
those of Oracle and Sybase. This
article is an attempt to help users
analyze the strengths and weak-
nesses of each implementation,
with an emphasis on providing
guidelines for using one method
versus the other.

DISTRIBUTED FOUNDATIONS
Distributed database technology
builds on an idea that is central to
the relational model: Users (includ-
ing application programmers and
DBAs) need only know about logi-
cal constructs and will be protect-
ed from changes to the physical
implementation. In particular, the
key logical construct is a relational
table. Its implementation as a phys-
ical construct should be hidden
from all users. Other physical con-
structs include the data’s location,
its physical storage format, and the
methods used to access it, such as
index creation and selection.

In principle, the DBMS can
manage all physical constructs and
operations automatically based on
declarative (logical) instructions. The
exception to this stricture against
referencing physical constructs is

available to the DBMS. The fre-
quent mixing of logical and phys-
ical constructs in current implemen-
tations (via the particular SQL
dialect) is_an unfortunate, disabling
violation of the relational model.
Strict separation of logical and
physical constructs in a relational
DBMS and its applications permits
the implementation of powerful
features, including tranparent man-
agement of distributed data.

In a distributed database, sev-
eral methods of managing distrib-
uted data exist, Among the meth-
ods are fragmentation, replication,
snapshots, and distributed transac-
tions. A table fragment is exactly
what it says. a fragment of a table.
MNote that the fragment is itself a
table in keeping with the concept
of relational closure. (Throughout
this article, 1 will not distinguish
among tables that happen to be
“base tables” versus those that are
derived tables such as views and
snapshots, since this differentiation
should not be relevant to users.)

A better name for a fragment
might be a partition; a fragment
can either be a horizontal or a ver-
tical partition of a table, not neces-

DATABASE PROGRAMMING & DESIGN

35

RATWORK BY I SHNNCR

e o

..,__.__..._.._._.._......,...._-._.
Y S ST T

— -

sarily disjpinted and each stored at
a particular physical location (inci-
| dentally, equipartitioning a table
—dividing it into some number of
disjointed tables of equal size—is
an important operation that is
missing from current relational
implementations). A DBEMS that sup-
ports fragmentation provides for
the physical placement of table
fragments independent of and
transparent to the table’s logical
identity. Ideally, even the DBA
| need not know how a table is frag-
mented; the division of a table into
separate physical fragments and its
distribution can be largelv auto-
matic and based on access patterns.

A replicate is a set of distinct
physical copies of a table that is
automatically kept in synchrony
by the distributed DBMS. regard-
less of physical location, The pro-
cess of creating and maintaining
replicates is naturally called repir-
cation. A number of methods exist
by which a DBMS can maintain
the synchrony of a set of replicates
Properly speaking, an update to
any replicate is immediately prop-
agated to all other replicates. In ri-
ality, a variety of mechanisms have
been proposed that relax this re-
quirement, one of which leads to
the notion of a copy of a table at a
point-in-time, called a snapshot.

Obviously, maintaining data-
base consistency while propagat-
ing updates among copies of tables
requires some notion of a transac-
tion and, in particular, the proper-
ty called atomicity. That is, either
the entire update is propagated to
all copies, or none of the update is
propagated to any copy (depend-
ing on the scheme used, the origi-
nating update may fail altogether).
Replication schemes often ensure
atomicity without the user being
aware of the transaction bound-
aries involved in the particular
mechanism; updates are propagat-
ed using system-initiated transac-
tions that commit, rollback, and
may even retry automatically. De-
pending on the scheme, the trans-
action boundaries may or may not
coincide in time with the bound-
aries of the update transaction ini-
tiated by the user.

MANAGING TRANSACTIONS
In addition to replication and frag-
mentation support, another impor-

RRRRARERRRRRRARY

Several methods
of managing
distributed data
exist

tant distributed database feature is
support for distribuled transactions.
These features are not exactly al-
ternative mechanisms; replication
can involve distributed transac-
tions, which can involve replica-
tion. Suppose a particular DBMS
implements replication, immedi-
ately propagating all updates to all
replicates. If these replicates are
distributed across multiple data-
bases, a transaction that updates a
replicated table is a distributed
transaction, Distributed transactions
are implicit in a variety of other
situations. For example, if a local
table is updated but a referential
integrity constraint involving re-
mote tables exists, an implicit dis-
tributed transaction is required
once again,

As noted earlier, one proper-
tv of database transactions is ato-
micity —either every action in the
transaction completes successfully
or none of them do. In a nondistri-
buted database, atomicity is typi-
cally ensured by some form of jour-
naling, which permits the database
to be restored to its original state
in the event of an error. In a dis-
tributed database, each site must
have its own journaling mechanism
if it is to be autonomous and ro-
bust. In order to maintain consis-
tency, each database executes its
portion of a distributed transaction
in cooperation with all others; if
one fails, they must all fail. Any
time a user references local and re-
mote tables in a single transaction,
either directly or indirectly, the
DBMS should automatically enforce
transaction atomicity, The user
should not have to be concerned

| wiath the fact that tables are distrib-

uted, Unfortunately, few (if any)
commercial attempts to implement
a distributed RDBMS have made
the location of tables entirely
transparent to users, and distribut-
ed transaction atomicity is costly
to enforce using current methods.

The principal method of en-

| suring distributed transaction ato-

micity is two-phase commit, mean-
ing that the coordination among
databases that participate in a
transaction go through two dis-
tinct phases in attempting to com-
mit a transaction. (Actually, if many |
phases exist, the more general con-
cept of a multiphase commit is
used. As more phases are involved,
the distributed transaction’s ato-
micity is more reliable and more
overhead exists.) The two phases
do not begin until all requests that
make up the transaction have been
processed, At this point, the user
issues a commit request and the
first phase (prepare) begins. The
prepare phase determines the abil-
ity of each participant to commit
its portion of the transaction, which
we refer to as a subiransaction. The
second phase (commit) informs all
participants either to go ahead and
commit (if all participants were
prepared to commit during the pre-
pare phase) or rollback (if even one
participant was not prepared to
commit during the prepare phase).

A 2PC protocol involves a
designated participant, called the
coordinator, to coordinate the deci-
sion during the commit phase.
While 2PC protocol can be made
robust to failures of most partici-
pants, special problems occur if the
coordinator fails after sending a |
“commit” decision to some but not
all participants. In particular, some
method of coordinating the recov-
ery of all participants after a fail-
ure of the coordinator must be im-
plemented. This aspect of the 2PC
mechanism differs most radically
among commerdal implementations,
and greatly determines relative ef-
ficiency and ease of distributed
database administration.

2PC: PLUSES AND MINUSES
The implementation of 2PC proto-
cols is, ideally, robust, efficient.
flexible, and fully transparent. In
practice, however, each commer-
cial implementation has strengths
and weaknesses that determine
whether it is adequate to a particu-
lar organization’s needs.
Automatic 2PC support re-
duces the amount of application
code the user must write, which is

| certainly true if the assumptions

in the design of the automatic 2PC
implementation are compatible with
the user’s needs, but may not be

MAY 1993
36

otherwise. In particular, should
the coordinator request that a par-
ticipant retry if an error is report-
ed by that participant during the
prepare phase? If so, for what class
of errors? Alternatively, should all
errors be considered catastrophic,
thereby forcing the entire distrib-
uted transaction to be rolled back?
(Mote that many of these issues are
important whether the transaction
is distributed or not.)

Another way in which a par-
ticular implementation of auto-
matic 2PC may not work well is in
the context of more complex appli-
cations. Keeping in mind that a
database transaction is intended to
transform the database from one
consistent state to another, the
question as to what constitutes a
consistent state, as well as how
strictly this consistency is to be en-
forced must be addressed, For ex-
ample, it is not difficult to find
business rules that are “condition-
al”; a particular integrity rule is
applied, and, if it fails, an alterna-
tive rule is put in effect.

Similarly, business rules are
sometimes expected to be enforced
within some period of time, but
not necessarily immediately, For
example, one generally cannot sell
what one does not own. However,
in stock trading the concept of
“selling short” defers the point in
time at which ownership must ex-
ist even though that ownership
must eventually be manifest. Such
complex business rules are diffi-
cult to characterize with today’s
RDBMS implementations and, un-
fortunately, require application code
with complex logic and robust er-
ror handling.

Another class of circum-
stances that is not generallv han-
dled by transparent ZPC imple-
mentations involves application
requirements for concurrent trans-
actions and parallelism. These sit-
uations require support for gener-
alized nested transactions (that is,
transactions that contain other
transactions and can be concurrent-
ly and independently executed,
committed, or rolled back). It is
easy to show that not all concur-
rent transactions can be replaced
by a single flat transaction, even
with emulation of nested transac-
tions by savepoints. In theory, if
nested transactions were support-

2PG is usually
an inefficient
process involving
many costs

ed by an RDBMS, they could be
distributed transactions with trans-
parent 2PC, Without this support,
such complex transactions require
special application logic and com-
mit processing.

Distributed transaction imple-
mentations (regardless of whether
transparent 2PC is supported or
not) should offer the user control
over transaction isolation levels or
degree of consistency enforcement.
When evaluating an implementa-
tion, the user should be careful to
make certain that the required de-
gree of consistency enforcement
has not been forfeited. This infor-
mation can be difficult to ascertain
since it depends on the locking
mechanism’s technical details, dead-
lock detection and recovery, time-
out mechanisms, potential failure
modes, and methods of manual or
automatic recovery (none of which
the vendor may be willing to
disclose).

In applications in which a
high degree of concurrency is re-

quired, a lower degree of consis- |

tency enforcement permitting cer-
tain update anomalies may be
desirable. This approach is accept-
able as long as the update anoma-
lies that would cause a loss of con-
sistency cannot occur given the
transaction mix. Furthermore, con-
trol over the degree of consistency
may be required, and this degree
may differ from subtransaction to
subtransaction.

2PC is usually an inefficient
process involving delay, message,
and write costs. Each participant
must first receive its portion of the
work and prepare to commit. Tt
must then inform the 2PC coor-
dinator that it is ready. If the com-
mit coordinator determines that all
participants are ready to commit, it
instructs them to go ahead and
commit. If any participant informs
the commit coordinator that it is
not prepared to commit, theé com-
mit coordinator must inform all
participants to abort. Therefore,

37

the transaction cannot proceed

any faster than the slowest partici- |

pant. The slowest participant must
be slower than if it had operated
alone because each participant
must communicate with the com-
mit coordinator.

2PC IMPROVEMENTS

Far this reason. a number of opti-
mizations that improve 2PC per-
formance have been developed,
three of which 1 will mention here.
The read-only commit optimization
recognizes that read-only subtran-
sactions need not participate in
callback portions of the prepare,
commit, or abort phases. (Of course,
if the all subtransactions are read-
only, 2PC is not needed at all) The
lazy contmit optintization is essentially
a distributed group commit, in
which messages and disk writes are
piggv-backed. The linear commit opti-
mization arranges subtransactions in
a linear order so that prepare and
commit propagate down and back
up a chain of participants,

The 2PC protocol for guaran-
teeing atomicity of distributed
transactions has a number of vari-
ations to handle catastrophic fail-
ures. To begin with, the methods
and degree of recovery depend on
whether the failure occurs during
the prepare or the commit phase,
For example, the commit coordina-
tor can fail, leaving in-doubt trans-

| actions (sometimes called limbo

"DATABASE PROGRAMMING & DESIGN

transactions). Typically, either a
polling or a time-out mechanism is
used to determine whether or not
the participant is still “alive” and
in communication. On the one
hand, a time-out mechanism can-
not distinguish between a busy
arnd a “dead” participant. On the
other hand, a polling mechanism
1= expensive. One method of han-
dling failures is called a "pre-
sume” protocol of which two basic
tvpes exist: presimme abort and pre-
stme comrent. With presume abort,
if a participant requests informa-
tion about the state of a transac-
tion from the coordinator (typical-
lv during recovery), it is presumed
te have been aborted if no record
of the transaction is found. A cor-
responding definition exists for
presume commit,

An alternative approach is to
have the participants poll the com-
mit coordinator when communica-

o R P -

7 M 5

tions are reestablished. Of course,
this approach can result in re-
sources being held and may pre-
vent access to data. However, it
eliminates the need for the DBA to
resolve in-doubt transactions man-
ually, which is a tedious process,

ORACLE'S IMPLEMENTATION
The Oracle Version 7.0 Distributed
Database Extension facility for 2PC
i5 transparent in wvirtually all cir-
cumstances. If a remote object 1s
referenced within a transaction,
two-phase commit is used. All in-
tegrity constraints, remote proce-
dures, and triggers are protected
by 2PC. However, declarative re-
ferential integrity constraints can-
not span databases. Distributed re-
ferential integrity constraints can
be implemented via triggers. How-
ever, on errors or system failures,
both the parent and the child ta-
bles are locked until they are re-
leased by their respective local
DBAs or until the transaction is
successfully completed.

The originator of a distribut-
ed transaction 15 known as the ¢/i-
bal coordinator. Any instance (Ora-
cle’s database unit of start/stop)
that must reference other data-
bases is known as the local coordin-
ator, One coordinator is designated
as a commut poini site; it is used to
determine the outcome of a 2PC
after the PREPARE phase. Ideally, the
commit point site will be the in-
stance that stores the most critical
data for the transaction. In prac-
tice, the commit point site is that
instance having the highest commit
point strength, a factor the DBA as-
signs to an instance at startup. The
factor cannot be changed dynami-
cally and it is not adjusted
automatically.

Read-only subtransactions do
not participate in the COMMT por-
tion of a 2PC, a partial implemen-
tation of the read-only commil opfi-
mization. The read-only condition
i5 detected dynamically; users do
not have to declare a read-only
transaction. The state of distribut-
ed transactions is maintained in a
“pending table.” This table 1s used
by the Oracle background recov-
ery process to recover in-doubt
transactions, or by the DBA to
identify and recover them manual-
Iv. In-doubt transactions hold ex-
clusive locks until the state of the

No concept of
distributed
statement

atomicity exists

transactions are resolved, although
the local DBA can force them to be
released

Transactions can be anno-
tated with a comment at commit
time (which is distinct from the
COMMIT phase of the 2PC). These

| comments are useful in identify-

ing transactions during manual re-
covery operations, In addition, cer-
tain special comments can be used
to force a failure at a selected point
in the 2PC process. These com-
ments are useful for testing a dis-
tributed database configuration.

Several difficulties introduced
by distributed transactions must
be carefully managed. Between
the PREPARE and COMMT phases of a
2PC, queries cannot access locked
data. For consistency, these locks
are guaranteed to survive an in-
stance failure. Unfortunately, a
failed distributed transaction may
hold locks indefinitely until access
to the coordinator and commit
point site has been reestablished for
all participants. It is up to the local
DBA to free them up. Similarly, a
database link that is involved in an
in-doubt transaction cannot be
dropped; unfortunately, no way
exists to discover which links are
involved in such transactions.

A tme-out is used to avoid
distributed deadlock conditions
rather than distributed deadlock
detection and recovery. Unfortu-
nately, a time-out appropriate to
the avoidance of deadlocks may be
too short for long-running, dis-
tributed queries. Any error condi-
tion in a distributed transaction,
including deadlock, requires that
the entire transaction be rolled
back. Of more practical concern,
no concept of distributed state-
ment atomicity exists, only trans-
action atomicity. This approach as-
sumes that statement failures (due
to violations of resource limit, au-
thorization, constraints, and so on)
must be detectable by the global
coordinator and that the amount

aborted and redone is not extreme.

SYBASE'S IMPLEMENTATION

In the current release, and in Syvs-
tem 10, the Svbase meiemgn]a_
tion of 2PC for distributed transac.
tions accessing multiple SQL
Servers is programmatic. A set of
routines are supplied as a part of
the Open Client API and are used
to obtain a commi! service (distrib-
uted transaction logging and re-
covery) from an SQL Server, ob-
tain a distributed transaction
identifier, send subtransactions
(not distributed gqueries) to S5QL
Server participants, and then step
through the prepare and commit
phases with each participant. The
current implementation relies on
the application for this logic. In ef-
fect, the application and the com-
mit service form the coordinator.

If any participant fails prior
to the commit phase, the applica-
tion code requests a rollback from
each participant. If it fails during
the commit phase, the appropriate
recovery is automatic. The failed
participant will automatically in-
terrogate the commit service dur-
ing its recoveryv and perform the
appropriate commit or abort auto-
matically. If the commit service
fails prior to the commit phase, the
application code must acquire a
new commit service and start over.
If the coordinator fails during the
commit phase, no solution handles
all the possible failure modes auto-
matically, and manual or user-
written programmatic intervention
is required to restore the partici-
pants to a consistent state.

While 1 believe that pro- |
grammatic 2PC should generally
be second choice compared to
automatic 2PC, circumstances exist
in which the degree of flexibility
it offers for error recovery and
transaction management DulWEl_Eh
the costs of developing and main-
taining code, Of course, this ap-
proach assumes the user has the
good sense to develop a library of
general-purpose, 2PC service func
tions that ensure a uniform re
sponse, and prevent programmers
from rewriting this code for each
distributed transaction

It is a little-known fact that
SQL Server implements automatic
2PC {and distributed queres, 10IN5S

of completed work that must be I and so on). Unfortunately, 5QL

MAY
k]

1993

il

'

=i PP S —————— - —

WiTET

o il e

LI R

Server restricts its use to multiple
databases managed by a single SOL
Server. This restriction makes the
functionality of little or no use for
physically distributed databases

REPLICATION

Propagation of updates from a pri-
mary to a set of replicas can be
characterized, for lack of better
terms, as either transactional or
nontransactional. By transactional,
we mean that changes that are
propagated as a unit all corre-
spond to some transaction. By con-
trast, nontransactional replication
propagates updates without re-
spect for the original transaction
boundaries, typically as soon as
each individual row is updated or
based on the current state of an in-
dividual table at some point in
time. Nontransactional replication
can introduce certain kinds of in-
tegrity problems, especially with
respect to recovery from errors. In
general, some notion of global
time must be maintained within
the entire distributed system to
avoid these errors,

Typical replication mecha-
nisms include utility-based (which
may or may not be a separate serv-
er process), trigger-based, or pro-
grammatic. Declarative definition
of replicates can use either a util-
ity-based or trigger-based mecha-
nism. A procedural definition can,
of course, use any mechanism.
Replication can be real-time, time-
based, or store-and-forward. Real-
time replication generally uses
2PC to ensure that all replicas are
updated synchronously. Time-
based replication normally uses
some sort of utility and is often
used for snapshot support, Store-
and-forward techniques are used
to handle network or site failures.

In extreme cases, the require-
ment for synchrony is relaxed to
the degree that synchrony is re-
quired only at a particular point-
in-time or perhaps periodically. In
this case, it is important to distin-
guish between the data’s primary
copy and all other copies, called
snapshots,

In the simplest form, both
replicates and snapshots are copies
of entire tables. However, it is also
possible for replicates and snap-
shots to be table fragments. Be-
tween the extremes of table copies

RERRARRNRANRAR

Both replicates
and snapshots
are copies of
entire tables

that meet the formal definition of
replicates and those that are de-
ferred snapshots, a range of possi-
bilities exists. For example, assum-
ing it is still possible to guarantee
consistency, the propagation of
updates can be deferred in time,
The guarantee of consistency
should be automatic, which raises
the question of what constitutes
consistency and what does not.

A DBMS that enforces abso-
lute consistency is said to enforce
the serializability of transactions; re-
gardless of the mix of concurrent
transactions, the result is guaran-
teed to be as though some particu-
lar serial (that is, sequentially in
time) execution of those transac-
tions had been run. Of course,
DBMSs frequently offer enforce-
ment of lesser degrees of consis-
tency. In particular, they permit
inconsistent results when certain
types of transaction mixes are run.
It is then the job of the DBA to en-
sure that these particular mixes of
database transactions do net in fact
occur and thereby avoid loss of
database integrity.

REFLICATION IN ORACLE
The Oracle Version 7.0 (Oracle?)
Distributed Database Extension fa-
cility for replication includes sev-
eral variations, which Oracle re-
fers to as either replicas or
snapshots, The mechanisms used
depend on whether you are copy-
ing data from a primary, or identi-
fving specific rows to be copied
vis-a-vis a smapshot log. Snapshot
logs contain the ROWIDs of
changed rows in the primary rep-
lica (Oracle refers to a primary as a
master table) along with a time-
stamp. The snapshot log is main-
tained via an “after row” trigger.
Oracle defines a snapshot as
a copy of a table at a point-in-time.
Snapshots are defined using a S
LECT statement and are classified as
simple or complex. A simple snap-
shot, in contrast to a complex
snapshot, has no GROUP BY, CONNECT BY,

join, subquery, or set operation in
its defining SELECT. Simple snap-

shots can be refreshed from a |

snapshot log; complex snapshots
are refreshed directly from the pri-
mary table and require a complete
refresh of the entire table. Snap-
shots can also be either synchro-
nous or asynchronous. Asynchro-
nous snapshots are read-only.

Two ways to refresh a snap-
shot table from a snapshot log ex-
ist. In one technique, a refresh
utility is used to read the snapshot
log and refresh the snapshot on a
refresh interval. The second tech-
nique is to force the refresh man-
ually using Oracle-supplied stored
procedures. Refresh using a snap-
shot log is called fast refresh. Mul-
tiple snapshots can use the same
snapshot log. While updates to the
snapshot log are transactional, the
actual refresh is not.

Oracle reserves the term rep-
licas to refer to synchronous snap-
shots. Replicas are implemented
by user-written triggers and may
be either read-only or read-write.
Updates to any replica are intend-
ed to be propagated by triggers to
all other replicas. Each replica
must have two triggers defined on
it (one for update and insert opera-
tions and one for delete opera-
tions), and a special flag column.
A projection view is defined on
each replica to prevent users from
seeing the flag column. The flag
column is used by the implemen-
tor-defined trigger code to prevent
endless cascades among replicas,
To add a new replica, the triggers
in all other replicas must be modi-
fied manually. In contrast with

| asynchronous snapshots, note that

the updates propagated to replicas
are protected by 2PC and are
transactional.

Several points should be made
regarding Oracle snapshots. First,
a table with a self-referential con-
straint cannot be automatically re-
freshed. Second, neither a replica
nor the snapshot log sees deletes
of the primary by the TRUNCATE com-
mand (a TRUNCATE command does
not cause triggers to fire). Third,
dropping a primary leaves the
snapshot tables intact.

SYBASE REPLICATION
It is possible to use a user-written

trigger mechanism to implement

MAY 1993
42

replica and snapshot updates in
SQL Server, This approach is simi-
lar to the user-written trigger
mechanism Oracle offers (using
TRUNCATE or dropping a primary has
the same effect), but SQL Server
uses a different mechanism to pre-
vent endless cascades. Unfortu-
nately, the remote procedures you
can use to update a remote replica
are not a part of the transaction in
which the triggering update oc-
curs. If a loss of integrity can re-
sult in the given application, the
developer mus* provide both a
means of ensuring that the up-
dates are not visible unless the
triggering transaction is commit-
ted, and that a compensating trans-
action is run if the triggering
transaction is aborted. Such a
mechanism is roughly equivalent
in complexity to using program-
matic 2PC,

The Sybase solution to this
complexity, Replication Server, is
expected to be in beta release in
the early second quarter of 1993,
The goal of Sybase Replication
Server is to move data among SQL
Servers, thereby making the over-
head of distributed transactions
within an application unnecessary
since all accessed data can be local.
The mechanism is server-based,
partially in an effort to minimize
interference by the replication
process with local operations.

With Replication Server, SQL
Servers “subscribe” to a primary
copy maintained by another, typi-
cally remote, SQL Server. The de-
clarative definition of a subscrip-
tion is similar to that used for a
view definition (an SQL SHECT is
used to define which table frag-
ment is to be replicated) and a
similar authorization mechanism
| is used (the definer must have the
appropriate permissions for the
data at the remote SQL Server).
The primary does not need to be
constrained to Sybase data. The
concept of “virtual” tables and col-
umns is used to provide a pseudo-
relational view of nonrelational
data. In general, the developer
must write a set of routines for the
log transfer manager that provides
this view, although Sybase has
stated an intent to build the log
transfer manager for some foreign
data sources such as DB2.

Any changes to the secon-

| Fod

2PC and
replication have
costs as well as
benefits

dary replicas are automatically
propagated back to the primary.
The definer can decide the order
in which updates are to be propa-
gated—whether to update the pri-
mary first and then propagate to
copies, or to the local copy first
and then the primary. Replication
Server is designed so that sub-
scriptions can specify that time-
stamps are to be used for point-in-
time snapshots or for automatic
conflict resolution, or can prevent
conflicts by requesting 2PC on up-
dates; the latter is not likely to be
available in the product's first
release.

The data changes correspond-
ing to a transaction are moved
among SQL Servers, rather than
copies of the data or the state-
ments (for example, SQL) that
would make the changes. The
Replication Server scans the after-
image log at a remote SQL Server,
detecting appropriate committed
update transactions, and sending
these portions of the after-image
log to subscribers, where they are
used to “rollforward” the replicas.

Users of Replication Server
should be aware of potential prob-
lems. For example, in the event of
a network or SQL Server failure,
Replication Server automatically
propagates updates to replicas as
soon as the remote SQL Server is
accessible. Care must be taken to
ensure that no conflicts result
from updates that take place to iso-
lated subnetworks while replicas
are “disconnected.” Also, the re-
quired time to propagate replicas
is on the order of 10 seconds so
that not all replicas will be identi-
cal simultaneously unless 2PC is
requested. While a delay of this
magnitude will often be unimpor-
tant, users must determine wheth-
er or not it constitutes an integrity
exposure for their application.

Replication Server error han-
dling differs from that of Oracle?
since it does not make replica up-
date a part of the onginal transac-

tion. If an update causes an error
at some SQL Server, the originat-
ing SQL Server gets an entry in a
special table that Sybase refers to
as a “queue” table. Entries contain
a transaction identifier, the reason
the update was rejected, and op-
tionally the time or other identify-
ing information. These entries are
intended to be handled by either a
user-written utility or by user-
written triggers on the queue table
{again, this approach provides
maximum flexibility at the ex-
pense of some additional develop-
ment and maintenance).

FALSE COMPARISONS

The industry’s trade journals’ dis-
cussion regarding the merits of
automatic 2PC versus replication is
based on a serious misunderstand-
ing of these database features. The
comparison is inappropriate. As
we have seen, both have their ap-
propriate uses, benefits, and costs.

Any particular implementa-
tion of two-phase commit (wheth-
er automatic or programmatic) or
replication has its costs and bene-
fits, and strengths and weaknesses,
For example, neither Oracle nor
Svbase uses replicas to optimize
performance automatically, Also,
neither can ensure that updates to
two or more replicas will not con-
flict. In principle, the mechanisms
used could result in distributed
deadlocks and errors, as well as
locks being held by in-doubt trans-
actions. Although we have looked
at the implementations of Sybase
and Oracle, these are not the only
companies with RDBMS products
that provide some support for two-
phase commit and replication. The
reader is encouraged to examine
the implementations of such prod-
ucts as DEC's Rdb/VMS, Tandem's
Non-Stop SQL, and Cincom’s Su-
pra Server in the light of this |
article.

The difficulties regarding how
to advise users on when to use
replication and when to use two-
phase commit remain. | will con-
clude with a few tips that address
this issue:

O Do not arbitrarily mix dis-
tributed transactions and replica-
tion. This approach can lead to in-
tegrity problems since updates in a
distributed transaction are propa- |
gated immediately and the replica-

DATABASE PROGRAMMING & DESICN
43

e o .

tion mechanism mav involve a de-

lay across sites

O Use distributed transac-
tions protected by two-phase com-
mit if the potential for data integ-
rity loss is not low given the
transaction mix.

O If relationships must be
maintained “to the second” and
you can tolerate the corresponding
loss in throughput, use distributed
transactions

O If the likelihood of data in-
tegrity loss is low and conflicts can
be resolved, use replication

O Consider using replication
if concurrency needs outweigh
data integrity requirements. In
particular, if few integrity con-
straints exist between the
and tables that would be involved
in transactions accessing the repli-
cated data, replication may work
fine

row's

O If you cannot define a sin-
gle path of update propagation,
given a particular state of the net-
work, make certain that the repli-
cation mechanism will not intro-
duce update sequence errors before
using it. This step is especially im-

portant if a site can receive the
same replica update many times
Otherwise, vou should use distrib-
uted transactions.

O If replication is utility-
based, make certain the utility is
robust. Weigh the possible costs
and benefits (points of failure, in-
terference, performance, and admin-
istration) before using replication,

O If possible, ensure that the
entire mix of transactions that ac-
cess replicas form a commuting set
(in other words, order of execution
should not change the final data-
base state), and that each such
transaction has a compensating
transaction

Finallv, examine any feature
offered by a database vendor care-
fully. Those consumers who fail to
heed this advice or fail to question
the vendor’s use of terminology
and their depth of understanding
of the requirements are certain to
be (unpleasantly) surprised. Cave-
at lector—let the reader beware. il

REFERENCES
1. MecGoveran, [, with C.]. Date. A
Gutde to Subase and S0L Server, Addison-

Wesley Publishing Co., 1992 The example
of programmatic 2PC that appeared in
Ohracle’s advertisement may be found on P
496, Figure 27.1

2. Cen. S, and G. Pelagatti, Dustributed
Databases: Principles and Systems, McGraw
Hill Inc., 1984,

A Date, C, 1. An Introduction to Database
Sustems Volume 1, Fifth Edition, Addison
Weslev Publishing Co., 19%)

d. Date, C. |, An Imtroduction to Database

| Sustems Volume 2, Addison-Wesley Publish

ing Co 1985

5. Date, C. |. Reiationad Database Writmgs
1986- 1959, Addison-Wesley Publishing Co
1 94

6. Grav.).. and A. Reuter. Tramsacfion Pro-
cesmng: Comcepts and Techmgues, Morgan
Kaufmann Publishers, 1993

7, MceGoveran, D. “"Oracle 7 Evaluation
Report: Database Product Evaluation Re
port Series,” Alternative Technelogies,
Boulder Creek, CA, 1993,

& McGoveran, I} "Svbase Evaluation
Report: Database !'[L‘dL;C1 Evaluation Re
port Series,” Alternative Technoelogies
Boulder Creek, CA. 1993

David McGoveran is president of Allerna-
tive Technologies (Boulder Creek, Cali-
fornia), a relational database consulting
firm founded in 19T6. He has authored
numerous technical articles thal have ap-
peared in Database Programming & De-
#ign and other leading industry journals,
He is also the publisher of the “Database
Product Evaluation Report Series.”

Fortunately, there's only one direction for

Client/Server training. . BENCHMARK

ClienServer

BENCHMARK's courses on server and
application development products are
available from coast-to-coast.

major corporations that rely on training
from BENCHMARK.

< Call 1-800-347-4661 for a
FREE Education Catalog

BENCHMARK

TECHNICAL SERVICES, INC.
386 Main Street, Middletown, CT 06457 (203) 346-466 |

HLJ]-Server o w repatened trademark of Merosolt Corp and SYBAEE, Ine. ORACLE i & regatersd tademark of Cmcle Corp DB s @ rogasbered
wradamark of the [BM Corp. X0 i 0 regestared rademark of X0 Systems, Inc. Mucro Focus Workbeneh s o romstered tradernark of Micro Foous, Irc

Join the

CIRCLE 15 ON READER SERVICE CARD

