
tJarauOX !Of vv1naows. :JUL :;,canaaras upaace. IBM s New 082 Dlfections
~-....-~·:ar..·. ~:>t<I'·-· '"" .• - .•

Distributed Diiemma:
Two-Phased Commit
or Repllcatlon?

Client/Server
Middleware

Designing for
Decision Support

Objects and Databases:
Where's It Headed?

VOL. 6 NO. 5

Two-Phased Commit
or Replication?

IEF/082
Performance, Part II

Concentric Design
for Decision Support

Objects and Databases:
Where Are VVe Now?

EDITOR'S BUFFER

ACCESS PATH

DATABASE DESIGN

I I ACCORDING TO DATE

OBA SHOPTALK

CLIENT ISERVFR FORUM

DESKTOP DATABASE

ENTERPRISE VIEW

SQL UPDATE

FOR ~·t ANACERS ONLY

I COVER BY: JIM SHINNICK I PRODUCT WATCH

34 DAVID McGoVERAN

A11 in-depth a11aly~s of the Oracle a11d Sybn:se

approaches to distribultd transaction control.

47 LOUIS A. MASCEUI

Looking at the rolr of ptrformancf! mo1111ots

ltt Ott popular IEF 1082 ent•iro11n1ent.

52 l<AMRAN PARSA YE AND MARK CHIGNELL

A design mdhod to htlp)<>• kcrp tht forest

in tntnd as .11ou swtng through Ott trees.

60 SANJEEV VARMA

Ob/ttt ort~ntation lS surt to affect tht future

of th• dalal>ase industry. Heres • look at how.

DEPAITMENTS

7
11
15
21
25
29
66
68
70
74
76

18lv1 meets its tou..: ··1·~ t audience: the users.

C. /. Date ansu'tr~ .111en'ts .fron1 readers.

At tht helm of busm<-> changt.

Extending the idea , closure.

Corning Vitro's met:·, to chtnt/S<rvtr.

/us/ u•hat rs "mzddl '.1r~" for clitnt lstrt•tr?

Borland's neu• Par11 \ lor lVurdoU''$,

Making tht u1_for-n1.1· .,, modtl ntr-0111ngful.

'A'ntclt out: The 1\!f('°')$[rs loose.1

Nov.1 U'lttch is dato -. •uck is infor111otwn7

MAY 1993

DATABASE PAOOAAMMING & OE.SIGN <ISSt-. 0695>46 181 • "uc:h•lllt<! l'lontily OV Vlltf i:1Hnt.ar, lnC l!OO "'•1"llOl'I SI $;wi "'* _oJ CA ;}.Ll(l! 1•1~: iOS-2200 o~se 0,..._, .~!1S+
n;i .-.c ecl•IOt• tf\OJ61'1tf 10 11'14 ·~"· "°" 14,1Ct(t'i0U)•'t t'iCl.WIM ell• l!!OOi 289-0le9 IOYltiOt us :JOJt U T t3X• SUBSCA•Pl ON RATE 'G• u 5 1$ $41 fCt 12 ~lllnl
~ CW'derl"f\.111 be ~ldr US V\Ol •+lh6Cld.!oi.i PQ«IQI •I S6oer)'Nf C..-«'•"GST Pe-m• /11!24Sl318S A. Oll'lllfc ffO...•i.-Olf '"• .JS "°""Cit ~r US VOi MM
acoito-.i~ If' 11!. oer.,.. 'Cf""'*•~ a s..&O P9f .,...1eir a. rat PO$T"4ASTDt k'1 aoor.,. c~ ~>DAlA8Aiif llAOGA.A:.'-1.'"<iG $::ts.G' PO 8o S..WI &:ucJit,
COIO.J22-34rilt rv ~-~- Olll ,,_ f800'• 1"-0let ,,.. ~.0001 °""--""vs &J0'3l U 1.9Jl0: ~ ~ • -s to'"'"~ OI ~"51.: t"ICt ~
Q_,ASS POS•AGE "9CI M Sr F•~ C.t. 9' ·01 ~ • ~ 'O'Wi ~""IQ o'ka DAto\BASf PROGRAMMING I OESIQ-. " a • .,_, t'~•I-.0 DJ- ·~ :.'"~ .c.~ Mfllt
r,_,...r nc- AA ffle.ttnal ~~ <t"t t)AfA&ASC pq()GR•ll~ -.Q & O£S<>.-~,. QOC>)'•Qht9d • 1993 or M.., ,,_.,,n in:: -'ii '"iit' ew ... t-0 ~•OOUC10f' ~ f'l'late•.al •1)&)11-.ro; ,,. CA11 ••
BASE PoqOQR"-~ ... ING & i)ESJGIJ,. IQlbCIOtn M."'OVl Ptl•"l•Ol'I 1$"M'I m1:::1~n·11. J::lo'TWI mi:;:rQl•rn. 105'YI•., l'l<C'Q! cne <t'ld "~"-If " uu. moJQCOPet ••• hll,11011 lrO"I"' 1,11'1.,..,.,,., M1t:r1>
.. ~. ""le1·1a1C111•, 300 N zeeo R~. A°'tn AfOO<. Ml 48106 !l131 161 •700.

DATA BASE l'ROCRAMMINC & 0£SlGN
5

~

:
;; .
i
~
~
~

~ . ,
!

I I I I I I I I I I I I

BY DAVID McGOVERAN

2PC? Replication? Or Both? Here's a primer to help you find your way
through the central issues in today's distributed DBMS debate

Two-Phased
Commit or

Replication?
R ECENTLY, A RIVAL

ry has developed be
tween Oracle and Sybase around
automatic versus programmatic two
phase commit (2PC) implementa
tions. For example, code for Sybase
programmatic 2PC' has been con
trasted with the Oracle SQL using
transparent 2PC in an Oracle Corp.
advertisement . Such comparisons
are usefuJ for marketing purposes,
but do not expose the more impor
tant technical issues.

Similarly, when Sybase an
nounced System 10 (the System 10
SQL Server was formerly referred
to as Release 5) and Replication
Server in November of 1992, the
computing industry p ress began
publishing articles that portrayed
replication as an alternative to the
overhead of 2PC. This inappropri
ate comparison is technically in
correct and has been widely prop
agated by the computing industry
press. Hopefully. this article will
help clarify the situation with re
spect to both issues.

In this article, I will d iscuss
the key methods of distribut ing
data, focusing on two: replication
and distributed transactions with
2PC. I wi ll describe the details of

implementation by some commer- 1 defining the physica l resources
cial relational DBMSs. speci fic;illy available to the DBMS. The fre
those of Oracle and Sybase. This quent mixing of logical and phys
article is an attempt to help users ical constructs in current implemen
analyze the strengths and weak- tations (via the parlicular SQL
nesses of each implementation. dialect) is.an unfortunate, disabling
with an emphasis on providing violation of the relational model.
guidelines for using one method Strict separation of logical and
versus the other. physical constructs in a relational

DISTRIBUTED FOUNDATIO NS
Distributed database technology
builds on an idea that is central to
the relational model: Users (includ
ing application programmers and
DBAs) need only know a bout logi
cal constructs and will be protect
ed from changes to the physical
implementation. In pa rticular, the
key logical construct is a relational
table. Its implementation as a phys
ical construct should be hidden
from all users. Other physical con
structs include the data's location,
its physical storage format, and the
methods used to access it. such as
index creation and selection.

In principle, the DBMS can
manage all physical ronstructs and
operations automatically based on
declarative (logieal) instructions. The
exception to ' this stricture against
referencing physical constructs is

DATABASE l'ROCRA MMINC & DESIGN
35

DBMS and its applications permits
the implementation of powerful
features, including tranparent man
agemenl of distributed data.

Jn a distributed database, sev
eral methods of managing distrib
uted data exist. Among the meth
ods are fragmentation, repl ication ,
snapshots, and distributed transac-
t ions. A table fragment is exactly
what it says: a fragment of a table.
Note that the fragment is itself a
table in keeping with the concept
of relational closure. (Throughout
this article, I will not d1stingujsh
among tables that happen to be
"base tables" versus those that are
derived tab/ts such as views and
snapshots, since this differentiation i
should not be relevant to users.) !

A better name for a fragmen t ~
might be a partition; a fragmen t &;
can either be a horizontal or a ver- !
lical partition of a table, not neces- i

)
-l

l
~
j

i
t 1
I l

' .

,

' ' ,,..

I

i
1

I
l

sarily disjointed and each stored ~t
a particular physical location {ind·
dentally, equipartitionong a table
- dividing it into some number of
disjointed tables of equa l size- is
an important operatio n thal is
missing from current relational
implementations). A DBMS that >UP
ports fragmentation provides for
the physical placement of table
fragments independent of and
transparent to the table's logic<1l
identity. Idea lly, even the OBA
need not know how a table is frag
mented; the d ivision of a table 111to
separate physical fragments and it<
distribution can be largely aut•>
matic and based on access pattern,.

A repl1rnte is a set of distinct
physical copies of a table th.11 is
automatically kept in synchrony
by the distributed DBMS, regard
less of physical location. The p«'·
cess of creating and maintaini ng
replicates is naturally called '"1'1•
cation. A number of methods exist
by wh ich a DBMS can ma int.iin
the synchrony of a set of repl icatc'.
Properly speaking, an update to
any replicate is immediately p rop·
agated to all other repli cates. In l'l'"

ality, a variety of mechanisms have
been proposed that relax this r~
quirement, one of which lead~ to
the notion of a copy of a table at a
point-in-time, called a snapshot.

Obviously, maintaining data·
base consis tency wh ile propagat
ing updates among copies of tables
requires some notion of a transac
tion and, in particular, the proper
ty ca lled atmnic1ty. Tha t is, e ither
the entire update is propagated to
all copies, or none of the update 1s
propagated to any copy (depend·
ing on the scheme used, the origi·
nating update may fail altogether).
Replication schemes oflen ensure
atomicity without the user being
aware of the transaction bound·
aries involved in the particular
mechanism; updates are propagat·
ed using system-initiated transoc·
lions that commit. rollback. and
may even retry automahcally. De
pending on the scheme, the trans
action boundaries may or may not
coincide in hme with the bound
aries of the update transaction on1·
tiated by the user.

MANAGING TRA NSACTIONS
In addition to replication and frag
mentation support, another im por-

I 111 1 11 1 11 1 11 1 11

I Several methods
of managing

distributed data
exist

tant distributed database featurt' is
support for d1stributtd transactions.
These fea tures are not exactly al
ternative mechanisms; replication
can involve distributed transac
tions, which can in volve replica
tion. Suppose a particular DBMS
implements replication, immedi·
ate I)' propagating all updates to all

I
replicates. If these replicates are
d istribu ted across mu ltiple data·
bases. a transaction that updates a
rephcated table is a distributed
transaction. Distributed transactions
are implicit in a variety of other
situations. For example. if a local
table is updated but • referential
integrity const rai nt involving re
mote tables exists. an implicit dis
tributed transaction is required

I
once again.

As noted earlier. one proper
tv of database transactions is ato
,;,,ic1ty-either every action in the
trans.1Clion completes successfully
or none of them do. In a nondistri
buted database, atorrucity is typi
cally ensured by some form of jour·
naling, which permits the database
to be restored to its original state
in the event of an error. In a dis
tributed database, each s ite must
have its own journaling mechanism
if it is to be autonomous and ro
bust. Jn order to maintain consis·
tency, each database executes its
portion of a distributed transaction
in cooperation with all others; if
one fails. they must all fail. Any
time a user references local and re·
mote tables in a single transaction ,
either directly or indirectly, the
DBMS should automatical ly enforce
transaction a tomicity. The user
should not have to be concerned
with the fact that tables are distrib
uted . Unfortunately, few (if any)
commercial attempts to implement
a distributed RDBMS have made
the location of tables entirely
transparent to users, and d istribut
ed transaction a tomicity is costly
to enforce using current methods.

The pnncipal method of en
surins d is tributed tr1insaction ato·

MAY 1993
36

micity is two-phase commit, mean·
ing that the coordination among
databases that participate in a
transaction go through t wo d is
tinct phases in attempting to com
mit a transaction. (Actually, if many
phases exist, the more general con
cept of a multiphase com mit is
used. As more phases are involved,
the distributed transaction's ato·
micity is more reliable and more
overhead exists.) The two phases
do not begin until all requests that
make up the transaction have been
processed. At this point, the user
issues a commit request and the
first phase (prepare) begins. The
prepare phase determines the abil
ity of each participant to commit
its portion of the transaction, which
we refer to as a subtransacllon. The
second phase (commit) informs all
participants either to go ahead and
commit (if all participants were
prepared to commit during the pre
pare phase) or rollback (if even one
participant was not p repared to
commit during the prepare phase).

A 2PC protocol involves a
designated participant, called the
coordinator, to coordinate the deci·
sion during the commit phase.
While 2PC protocol can be made
robust to fa ilures of most partici·
pants, specia.l problems occur if the
coordinator fails after sending a
"commit" decision to some but not
a ll part icipants. In particular, some
method of coordinating the recov
ery of all participants after a fail
ure of the coordinator must be im·
plemented. This aspect of the 2PC
mechanism differs most radically
among commercial implementations,
and greatly determines relative e f
ficiency and ease of distributed
database administration.

2PC: PLUSES AND MINUSES
The implementation of 2PC proto
cols il>. ideally, robust, efficient.
flexible, and fully tronsparent. In
practice, however, each commer·
cial implementation has strengths
and \.\reaknesses that determine
whether it is adeq uate to a particu
lar organization's needs.

Automatic 2PC support re
duces the amount of application
code the user must wri te, which is
certainly true if the assumptions
in the design of the automatic 2PC
implementation are compatible with
th e user's needs, but may not be

otherwise. In particular, should
the coordinator request that a par
ticipant retry if an error is report
ed by that participant during the
prepare phase? If so, for what class
of errors? Alternatively, should all
errors be considered catastrophic,
thereby forcing the entire distrib
uted transaction to be rolled back?
(Note that many of these issues are
important whether the transaction
is d istributed or not.)

Another way in which a par
ticular implementation of auto
matic 2PC may not work well is in
the context of more complex appli
cations. Keeping in mind that a
database transaction is intended to
transform the database from one
consistent state to another, the
question as to what constitutes a
consistent state, as well as how
strictly this consistency is to be en·
forced must be addressed. For ex
ample, it is not difficult to find
business rules that are "condition
al"; a particular integrity rule is
applied, and, if it fails, an alterna·
tive rule is put in effect.

Similarly, business rules are
sometimes expected to be enforced
within some period of time, but
not necessarily immediately. For
example, one generally cannot sell
what one does not own. However,
in stock trading the qmcept of
"selling short" defers the point in
time at which ownership must ex
ist even though that ownership
must eventually be manifest. Such
co'mplex business rules are diffi
cult to characterize with today's
RDBMS implementations and, un
fortunately, require application code
with complex logic and robust er
ror handling.

Another class of circum
stances that is not generally han
dled by transparent 2PC imple
mentations involves application
requirements for concurrent trans
actions and parallelism. These sit
uations require support for gener
alized nested transactions (that is,
transactions that contain other
transactions and can be concurrent
ly and independently executed,
committed, or rolled back). It is
easy to show that not all concur
rent transactions can be replaced
by a single flat transaction, even
,,,rith emulation of nested transac
tions by savepoints. In theory, if
nested transactions were support-

I I I ,

2PC is usually
an Inefficient

process inwlving
many costs

ed by an RDBMS, they could be
distributed transactions with trans
parent 2PC. Without this support,
such complex transactions requjre
special application logic and com
mit processing.

Distributed transaction imple
mentations (regardless of whether
transparent 2PC is supported or
not) should offer the user control
over transaction isolation· levels or
degree of consistency enforcement.
When evaluating an implementa
tion, the user should be careful to
make certain that the required de
gree of consistency enforcement
has not been forfeited. This infor
mation can be difficult to ascertain
since it depends on the locking
mechanism's technical details, dead
lock _detection and recovery, time·
out mechanisms, potential failure
modes, and met hods of manual or
automatic recovery (none of which
the vendor may be willing to
disclose).

In applications in which a
high degree of concurrency is re
quired, a lower degree of consis
tency enforcement permitting cer
tain update anomal ies may be
desirable. This approach is accept
able as Jong as the update anoma
lies that would cause a loss of con
sistency cannot occur given the
transaction mix. Furthermore, con
trol over the degree of consistency
may be required, and this degree
may differ from subtransaction to
subtransaction.

2PC is usually an inefficient
process involving de lay, message,
and write costs. Each participant
must first receive its portion of the
work and prepare to commit. It
must then inform the 2PC coor
dinator that it is ready. If the com
mit coordinator determines that all
participants are ready to commit, it
instructs them to go ahead and
commit. If any participant informs
the cOmmit coordinator that it is
not prepared to commit, the com
mit coordinator must inform a ll
participants to abort. Therefore,

DAT.4BASE PROGIV\MMING & OCSIG.\'
37

th e transaction cannot proceed
any faster than the slowest partici
p.1nt. The s lowest participant must
be slower than if it had operated
alone because each participant
mus t communicate w ith the com
mit coordinator.

2PC IMPROVEMENTS
For this reason, a number of opti
mizations that improve 2PC per
formance have been developed,
lhree of which I will mention here.
The rend-only conunit optitnization
recognizes that read-only subtran
sactions need not participate in
callback portions of the prepare,
commit, or abort phases. (Of course,
if the all subtransactions are read
only, 2PC is not needed at all.) The
lazy commit optimization is essentially
a distributed group commit, in
which messages and disk writes are
piggy-backed. The linear commit opti
mization arranges subtransactions in
a linear order so that prepare and
commit propagate down and back
up a chain o f participants.

The 2PC protocol for guaran
teeing atomicity of distributed
transactions has a number of vari·
ations to handle catastrophic fail
ures. To begin with, the methods
and degree of recovery depend on
whether the failure occurs during
the prepare or the commit phase.
For example, the commit coordina
tor can fail, leaving in-doubt trans
actions (sometimes called limbo
transactions). Typically, either a
poll ing or a time-out mechanism is
used to determine whether or not
the participant is st ill "alive" and
in communication . On the one
hand, a ti me-out mechanis m can·
not d istinguish between a busy
and a "dead" participant. On the
other hand, a polling mechanism
i~ t!Xpensive. One method of han
dli ng failures is called a "pre
sunw" protocol of which two basic
types ex ist: prrsuure abort and pre
~un11! C(Jtnnrif. With presume abort,
if " participant requests informa
tio n about the s tate of a transac
th)n fro m the coordinator (typical
Jv during recovery), it is presumed
to have been aborted if no record
of the transaction is found. A cor
responding definition exists for
presume con1mit.

An alternative approach is to
have the participants poll the com
mit coordinator \vhen communica-

,
•

tions are re<?Stablished. Of course,
this approach can result in re
sourcl'S being held and may pre
vent access to data. However. it
eliminates the need for the OBA to
resolve in-doubt transactions man
ually, which is a tedious process.

ORACLE'S IM PLEMENTATION
The Oracle Version 7 .0 Distributed
Database Extension facilitv for 2PC
is transparent in virtualiy all cir
cumstances. H a remote object is
referenced \Vithin a transaC:t iC\11,
two-phase commit is used. All in
tegrity constraints, remote pr<'Ce
dures, and triggers are protect~d
by 2PC. However, declarative r~
feren tial integrity constraints c.in
not s pan databases. Distributed re
(erential integrity constrajnts can
be implemented via trigger... Ho"'·
ever. on errors or system failures,
both the parent and the child ta
bles are Jocked until thev arc re
leased by their respective local
DBAs or until the transaction is
successfully completed.

The originator of a distnbut·
ed transaction is kno"''" as the ~l··
bal coordinator. Any instance (Ora
cle's database unit of start /stopl
that must reference other data·
bases is known as the local coordin
ator. One coordinator is designated
as a co11,,nit point sUe; it is used to
determine the outcome of a 2PC
after the ~RE phase. Ideally, the
comnut point site will be the in
stance that stores the most critical
data for the transaction . In prac
tice, the commit poin t s ite is that
instance having the highest commit
point strtngth, a factor the OBA as
signs to an instance at startup. The
factor cannot be changed dynami
cally and ii is not adjusted
automatically.

Read-only subtransactions do
not participate in the CXMifT por
tion of a 2PC, a partial implemen
tation of the read-011/y commit opti
mization. The read-on ly condition
is detected dynamically; users do
not have to declare a read-only
transaction. The state of distribut
ed transactions is maintained in a
"pending table." This table is used
by the Oracle background recov
ery process to recover in-doubt
transactions, or by the OBA to
identify and recover them manual
ly. In-doubt transactions hold ex
clusive locks until the State O(the

I 11 1 11 1 11 1 11 1 1111

No concept or
distributed
statement

atomicity exists
transactions are resolved, although
the local OBA can force them to be
released.

Transactions can be anno
tated with a comment at commit
time (which is distinct from th<'
COMMIT phase of the 2PC). These
comments are useful in identify
ing transactions during manual re
covery operations. In addition, cer
tain specia l comments can be used
to force a failure at a selected point
in the 2PC process. These com
ments are useful for testing a dis
tributed database configuration .

Several difficulties introduced
by distributed transactions must
be carefully managed. Between
the ~ and OOMMT phases of a
2PC, queries cannot access locked
data. For consiste ncy, these locks
are guaranteed to survive an in ..
stance failure. Unfortunately, a
failed distributed transaction may
hold locks indefinitely until access
to the coordinator and commit
point site has been reestablished for
all participants. It is up to the local
OBA to free them up. Similarly, a
database link that is involved in an
in-doubt transaction cannot be
dropped; unfortunately, no way
exists to discover which links are
involved in such transactions.

A time-out is used to avoid
distributed deadlock conditions
rather than distributed deadlock
detection and recovery. Un fortu
nately, a time-out appropriate to
the avoidance of dead locks may be
too shor t for long-running, d is
tributed queries. Any error condi
tion in a distributed transaction,
including deadlock, requires that
the entire transaction be roll ed
back. Of more practical concern,
no concept of distributed state
ment atomicity exists, only trans
action atomicity. This approach ns
sumes that statement failures (due
to violations of "'source limit, au
thonz.ation, constraints, and so on)
must be detectable by the global
coordinator and that the amount
of completed work that must be

MAl 1993
38

aborted and redone is not extreme.

SYBASE'S IMPLEM ENTATION
In the current release, and in Sys
tem 10, the Sybase implementa
tion of 2PC for distributed transac
t ions accessing mu ltiple SQL
Servers Is programmatic. A set of
routines are supplied as a part of
the Open Client API •nd are used
to obtatn a commit serv1ct (distrib
uted transaction logging and re
covery) from an SQL Server, ob·
tain a distributed transaction
identifier, send subtransactions
(not distributed queries) to SQL
Server participants, and then step
through the prepare and commit
phases with each participant. The
current implementation relies on
the application for this logic. In ef·
feet, the application and the com
mit service form the coordinator.

If any participant fails prior
to the commit phase, the applica
tion code requests a rollback from
each participant. U 1t fails during
the commit phase, the appropriate
recovery is automatic. The failed
participant will automatically in·
terrogate the commit service dur
ing its recovery and perform the
appropriate commit or abort auto
matica lly. If the commit service
fails prior to the commit phase, the
application code must acqui re a
new comm.it service and start over.
If the coordinator fails during the
commit phase, n o solution handles
all the possible failure modes auto·
matically, and manual or user·
written programmatic lnterventio~
is required to restore the partici
pants to a consistent state.

While I believe that pro·
gram matic 2PC should generally
be second ch oice compa red to
automatic 2PC, circumstances exist
in which the degree of flexibility
it offers for error recovery and
transaction management outwei~h
the costs of developing and main
taining code. Of course, this •p·
proach assumes the user has the
good sense to develop a library of
general-purpose, 2PC service func-
1 ions that ensure a uniform rf'·
sponse, and prevent programmers
from rewriting this code for each
distributed transaction.

It is a little-known fact that
SQL Server implements a.utomatic
2PC (and distributed qucnes, 1oms,
and so on). Unfortunately, SQL

• • l
r" . •
• .. .I

. I

j

\

•

~l
• I

Server restricts its use to multiple
databases managed by a single SQL
Server. This restriction makes the
functionalitv of little or no use for
physically d1stributed database~

REPLICATION
Propagation of updates from a pri
mary to a set of replicas can be
characterized, for lack of bette r
terms. as either transachonal or
nontransactional . By lTansactional,
we mean that changes that arc
propagated as a unit a ll corre
spond to some transaction. By con
trast , nontransactio nal rtplr(O' llln
propagates updates without re
spect for the original tran"3Clliln
boundaries, typically as soon ,1s
each individua l rO"'' is updat(\d or
based on the current state of an in
dividual table at some point in

hmc. Nontransactional replocatlon
can introduce certain kinds of 1n·
tegrity problems. especially with
respect to recovery from errors In
general. some notion of global
time must be maintained with in
the entire distributed system to
avoid these errors.

Typica l replication mecha
nisms include utility-based (which
may or may not be a separate sen·
er process), trigger-based, or pro
grammatic. Declarative definition
of replicates can use either a util
ity-based or trigger-based mecha
nism. A procedural definition can,
of course, use any mechanism.
Replication can be real-time, time
based, or store-and-forward. Real
time replication generally uses
2PC to ensure that all replicas are
updated synchronously. T1mc
based replication normally uses
some sort of utility and is often
used for snapshot support. Store
and-forward techniques arc used
to handle network or site failures.

In extreme cases, the require
ment for synchrony is relaxed to
the degree that synchrony is re
quired only at a particular point
in-time or perhaps periodically. In
this case, it is important to d1shn
gu1sh between the data's pnnury
copy and all o ther copies. called
snapshots.

In the simplest form, both
replicates and snapshots are copies
of entire tables. However. 1t is also
possible for replicates and snap
shots to be table fragments. Be
tween the extremes of table copies

11 1 1 1 1 11 1 1 11 1 11 1 1

Both replicates
and snapshots
are copies of
entire tables

that meet the formal definition of
replicates and those that are de
ferred snapshots, a range of possi
bilities exists. fur example, assum
ing it is s till possible to guarantee
consistency. the propagation of
updates can be deferred in time.
The guarantee of consistency
should be automatic. which raises
the question of what constitutes
consistency and what does not.

A DBMS that enforces abso
lute consistency is said to enforce
the wralizability of transactions; re
gardless of the mi x of concurren t
transactions, the result is guaran
teed to be as though some particu
laJ' serial (that is, sequentially in
time) execution of those transac
tions had been run . Of course,
DBMSs frequently offer en force·
mcnt of lesser degrees of consis
tency. In patticular, they permit
incon.sistent results when certain
types of transaction mixes are run.
It is then the job of the DBA to en
sure that these particular mixes of
database transactions do not in fact
occur and thereby avoid loss of
database integrity.

REPLICATION IN ORACLE
The Oracle Version 7.0 (0racle7)
Distributed Database Extension fa.
cility for replication includes sev
eral variations. which Oracle re
fers to as either replicas or
snapshots. The mechanisms used
depend on whether you are copy
ing data from a primary, or identi
fying specific rows to be copied
vis-a-vis a snapshot log. Snapshot
logs con ta in the ROWIDs of
changed rows in the primary rep·
lica (Oracle refers to a primary as a
master table) along with a time
stamp. The snapshot log is main
tained via an "after row" trigger.

Oracle defines a snapshot as
a copy of a table at a point-in-time.
Snapshots are defined using a SE·
UCT statement and are classified as
simple or complex. A simple snap
shot, in contrast to a complex
snapshot, has no GROUP BY, WffCT BY,

MAY 199.1
42

join, subquery, or set operation in
its defining S£UCT. Simple snap
shots can be refreshed from a
snapshot log; complex snapshots
are refreshed directly from the pri
mary table and require a complete
refresh of the entire table. Snap·
shots can also be either synchro
nous or asynchronous. Asynchro
nous snapshots ate read-only.

Two ways to refresh a snap
shot table from a snapshot log ex
ist. In one technique, a refresh
utility is used to read the snapshot
log and refresh the snapshot on a
refresh interval. The second tech
nique is to force the refresh man
ually using Oracle-supplied stored
procedures. Refresh using a snap
shot log is called fast refresh. Mul
tiple snapshots can use the same
snapshot log. \.\'hile updates to the
snapshot log are transactional, the
actual refresh is not.

Oracle reserves the term rep
licas to refer to synchronous snap
shots. Replicas are implemented
by user-written triggers and may
be either read-only or read-write.
Updates to any replica are intend
ed to be propagated by triggers to
all other replicas . Each replica
must have two triggers defined on
it (one for update and insert opera
tions and one for delete opera
tions). and a special flag column.
A projection view is defined on
each replica to prevent users from
seeing the flag column. The flag
column is used by the implemen
tor-defined trigger code to prevent
endless cascades among replicas.
To add a new replica, the triggers
in all other replicas must be modi
fied manually. Jn contrast with
asynchronous snapshots, note that
the updates propagated to replicas
are protected by 2PC and are
transactional.

Several points should be made
regarding Oracle snapshots. First,
a table with a self-referential con
stra.int cannot be automatically re·
freshed . Second, neither a replica
nor the snapshot log sees deletes
of the primary by the TIU«:ATE com
mand (a TRUNCATE command does
not cause triggers to fire). Third,
dropping a primary leaves the
snapshot tables intact.

SYBASE REPLICATION
It is possible to use a user-written
trigger mechanism to implement

replic.a and snapshot updates in
SQL Server. This approach is simi
lar to the user-written trigger
mechanism Oracle offers (using
TRIH:AIT or dropping a primary has
the same effect), but SQL Server
uses a different mechanism to pre
vent endless cascades. Unfortu
nately, the remote procedures you
can use to update a remote replica
•te not a part of the transactton in
which the triggering update oc
curs. If a loss of integrity can re
su lt in the given appliG1tion, the
developer mus! provide both a
means of ensuring that the up·
dates arc not visi ble unless the
triggering transaction is commit
ted, and that a compensating trans
act ion is run if the triggering
transaction is abo rted. Such a
mechanism is roughly equivalent
in complexity to using program
matic 2PC.

The Sybase solution to this
complexity, RepliC<ltton Server, is
expected to be in beta release in
the early second quarter of 1993.
The goal of Sybase Replication
Server is to move data among SQL
Servers, thereby making the over
head of distributed transactions
within an applica tion unnecessary
since all accessed data can be local.
The mechan ism is server-based,
partially in an effort to minimize
interference by the replication
process with local operations.

With Replication Server, SQL
Servers "subscribe" to a primary
copy mamtained by another, typi
cally remote, SQL Server. The de
clarative definition of a subscrip·
lion is similar to that used for a
view definition (an SQL sncCT is
used to de!ine wh ich table frag
ment is to be replicated) and a
similat authorization mechanism
is used (the definer must have the
appropriate permissions for the
data at the remote SQL Serve r) .
The primary does not need to be
constrained to Sybase data. The
concept of "virtual" tables and col
umns is used to provide a pseudo
relational view of nonrelational
data . Jn general, the developer
must write a set of routines for the
log transfer manager that provides
this view, although Sybase has
stated an intent to build the log
transfer manager for some foreign
data sources such as 082.

Any changes to the sccon-

I I I I , I I I I I

2PC and
repllcatlon have
costs as well as

benents
dary replicas are automatically
propaga ted back to the pnmary.
The definer can decide the order
in which updates are to be propa·
gated- whether to update the pri·
mary hrst and then propagate to
copies, or to the local copy first
and then the primary. Replication
Server is designed so that sub·
scriptions can specify that time
stamps are to be used for point-in·
time snapshots o r for automatic
conflict resolution. or can prevent
conflicts by requesting 2PC on up
dates; the latter is not likely to be
available in the product's first
release.

The data changes correspond·
ing to a transaction are moved
among SQL Servers, rather than
copies of the data or the s tate·
ments (for example, SQL) that
would make the changes. The
Replication Server scans the after
image log at a remote SQL Server,
detecting appropriate committed
update transactions, and sending
these portions of the after-image
log to subscr ibers, where they are
used to " rollforward" the replicas.

Users o f Replication Server
should be awaie of potential prob
lems. For example, in the event of
a network or SQL Server failure,
Replication Server automatically
pro pagates updates to replicas as
soon as the remote SQL Server is
accessible. Care must be taken to
ensu1e that no conflicts result
from updates that take place to iso·
lated subnetworks wh.ile replicas
arc "disconnected." Also, the re
quired time to propagate replicas
is on the order of 10 seconds so
that not a ll replicas will be identi·
cal simultaneously unless 2PC is
r~uestcd . While a delay of this
magnitude will often be unimpor·
tant, users must determine wheth·
er or not it constitutes an int<'grity
exposure for their application.

Replication Server error han·
dling differs from that of Orade7
since 1t does riot make replica up
date a part o f the original lransac·

DATABASE PROGRAMMING & DESIGN
43

tion. If an update causes an error
at some SQL Server, the originat·
ing SQL Server gets an entry in a
special table that Sybase refers to
as a "queue" table. Entries contain
a transaction identifier. the reason
the update was rejected, and op
tionally the time or other identify·
ing information. These entries are
intended to be handled by eithet a
user-written utility or by user·
written triggers on the queue table
(again, this approach provides
maximum flexibility at the ex
pense of some additional develop
ment and maintenance).

FALSE COMPARISONS
The industry's trade journals' dis·
cussion regarding the merits of
automatic 2PC versus replication is
based on a serious misunderstand·
ing of these database features. The
comparison is inappropriate. As
we have seen, both have their ap
propriate uses, benefits, and costs.

Any particular implement•·
tion of two-phase commit (wheth·
er automatic or programmatic) or
replication has its costs and bene
fits, and strengths and weaknesses.
For example, neither Oracle nor
5,·base uses replicas to optimiu
performance automatically. Also,
neither can ensure that updates to
t\\'O or more repl leas ¥.'ii I not con ..
flict. In principle, the mechanisms
used could result in dis tributed
deadlocks and errors, as well as
locks being held by in-doubt h'aN
actions. Although we have looked
at the implementations of Sybase
and Oracle, these are not the only
companies with RDBMS products
that provide some support for two
phase commit and replication. The
reader is encouraged to examine
the implementations of such prod·
ucts as DEC's Rdb/ VMS, Tandem's
Non-Stop SQL. and Cincom's Su·
pra Server in the light of this
article.

The difficulties regarding how
to advise users o n when to use
replication and when to use two
phase commit remain. I wilt con·
elude with a few tips that address
this issue:

D Do not arbitrarily mix dis·
tributed transactions and replica·
tion. This approach can lead to in
tegrity problems since updates in a
distributed transaction are propa·
gated immediately and the replica·

j I
I

tion mechanism may involve a de
lay across sites.

0 Use distributed transac
tions protected by two-phase com
mit if the potential for data integ
rit)• loss is not low given the
transac-tion mix.

0 If re lationships must be
maintained " to the second" and
you can tolerate the corresponding
loss in throughput, use distributed
transactions.

0 If the likelihood of data on
tegnty loss is low and confhcts can
be resolved, use rcphcahon .

0 Consider using replication
H concurrency needs ou twe igh
data integrity requirements. In
particular, if few in tegrity co n
strai nts exist bet"•ccn the ruvvs
and tables that would be involv"d
in transactions accessing the repli·
cated data, replication may wo rk
line

0 If you cannot def one a sin
gle path of update propagatio n,
given a particular state of the net
work, make certain that the repli·
cation mechanism wHl not intro·
duce update sequence errors before
using it . This s tep is especially im-

I. 1 11 11 1 11 11 1 1 11 1 I

portant if a site can receive the
same replica update many times.
Otherwise, you should use distnb·
uted transactions.

O If replication is utility·
based, make certain the utility is
robust. Weigh the possible costs
and benefits (poin ts of fai lure, in
terference, performance, and admin·
istTation) before using rep lication.

0 If possible, ensure that the
entire mix of transactions that ac
cess replicas form a commuting set
(in other words, o rder of execution
should not change the final data·
base state), and that each such
transaction has a compensating
transaction .

Finally, exa mine any feature
offered by a database vendor care·
fullv. Those consumers who fail to
heed this advice or fail to question
the vendor's use of terminology
and their depth of understanding
of the requirements are c-ertain to
be (unpleasanlly) surprised. Caw
at lector-let the reader beware. •

REFERENCES
J McGo\1('ran, 0 .. "-'Ith C. J, Date. A

Guide to Sybo(I and SQL Strvt'r, Addison ·

I "'~It!). Pubhshing Co .• 1992 Th~ ~).amplt
of progr.immatic 2PC t.Nt •PP'!•r~d in
Oracle'• adwrtisement may bt fou.nd on p
496. F1gu,. 27. 1.

2 Ctn, S .. and G. Pelagatt i D1striri1tt 4
D1tto1'11~: Pnr.r ipf6 a>td Sy!>tt'm.1o. ti.icCtr.t~·-
Hill lnc., 19S4. ·

3 D.111e, C. J. An 1ntrod11d1or1 to Datoba~
$11~tt·m•" Volumt J, Fifth Edi tion. Add180n
V.\.·•IC\' Publ ishing Co., 1990

4 0Jtf', C. f, An lr.troductrc"• to Dara/lo~
Sv,,rms· Volumt 2, Addison-\\'esley Publi)h·
ing Co .. 1985

S Date-. C. f Rtlatt0.W D11ft1N.:< \o\nung~.
1986 J989, Addtson-\\'esJey Pubhsh1ns Co.
1900

6 Gn1y. J •• and A . Rf'Uter Tro.nsac-tK'l'f Pre>
cNSing Co" rcph 1n:d Ttdtn-"JMN. M org.tn
Kaufmann Publishers., J 993

1 J\icCovtra.n. 0. "Oracle 1 Evil u11111on
Rcpor;I. Database Product E\•aluation Re·
port Sl•ri<.-s," Alternative Technologies.
Ooulder Cr~ek. CA, 1993.

8. Mt<':overan, O. "Sybase E\•.iluation
R•port. D.>tabase Product Evaluatio n Re·
port ~·ru .. -s," Alternative T«t'lnolog1<.">.
lk>uldf'r Crffk, CA, 1993.

David McGoveta.n ii prelident ot Altetna·
ti,,. Tocllnologies (Boulder CrMl<, Coll·
tornLa), • ,.lalional datab1M con1ultlng
firm founded in 1976. He ha1 author.cf
num•rou1 1echnical artic._1 that have •P
~•red In D•l•b•• • Programming I o.
• lgn and other leading lndu1try fourn111.
He 11 1leo the publisher of the 11D1t1b1M
Pfoduct Ev1luaUon Repott 8tr~1."

Fortunatelv there's onlv <>11e direction for . ' .
Client/Ser\'cr trai11i11K •• • BENCHMARK

Client/Server
SQL-Server.

ACLE.

BENCHMARK's courses on server and
application development products are
available from coast-to-coast. Join the
major corporations that rely on training
from BENCHMARK.

Call 1-800-347-4661 for a
FREE Education Catalog

BENCHMARK
T ECHNICAL SERVICES, INC.

386 Main Street, Middletown, CT 06457 (203) 346-4661
SQL.-~ • • ~1~ ~ o/M.IM)t(>lt Ccwp and SYBAS.E. Inc:, ORACLE .. . nc••tr.cl lnllkmado(Ondc Corp 002 la. ftplllftd

1fld«l'l.rt o(tbc IBM Colp. XDB '- • f'f'Pltrtd ~ ofXDll Sysleml., lnc. MlCTO Focw Wortbmdl a 1 l"Plcred lnda...t ofM.cro Focw., lni:

CIRCLE 15 ON READER SERVICE CARD

